3.9.4 \(\int \frac {A+B x^2}{(e x)^{3/2} \sqrt {a+b x^2}} \, dx\) [804]

Optimal. Leaf size=290 \[ -\frac {2 A \sqrt {a+b x^2}}{a e \sqrt {e x}}+\frac {2 (A b+a B) \sqrt {e x} \sqrt {a+b x^2}}{a \sqrt {b} e^2 \left (\sqrt {a}+\sqrt {b} x\right )}-\frac {2 (A b+a B) \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{a^{3/4} b^{3/4} e^{3/2} \sqrt {a+b x^2}}+\frac {(A b+a B) \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{a^{3/4} b^{3/4} e^{3/2} \sqrt {a+b x^2}} \]

[Out]

-2*A*(b*x^2+a)^(1/2)/a/e/(e*x)^(1/2)+2*(A*b+B*a)*(e*x)^(1/2)*(b*x^2+a)^(1/2)/a/e^2/b^(1/2)/(a^(1/2)+x*b^(1/2))
-2*(A*b+B*a)*(cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(
1/4)/e^(1/2)))*EllipticE(sin(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*(
(b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/a^(3/4)/b^(3/4)/e^(3/2)/(b*x^2+a)^(1/2)+(A*b+B*a)*(cos(2*arctan(b^(1/4)
*(e*x)^(1/2)/a^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))*EllipticF(sin(2*arc
tan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(
1/2)/a^(3/4)/b^(3/4)/e^(3/2)/(b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 290, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {464, 335, 311, 226, 1210} \begin {gather*} \frac {\left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} (a B+A b) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{a^{3/4} b^{3/4} e^{3/2} \sqrt {a+b x^2}}-\frac {2 \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} (a B+A b) E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{a^{3/4} b^{3/4} e^{3/2} \sqrt {a+b x^2}}+\frac {2 \sqrt {e x} \sqrt {a+b x^2} (a B+A b)}{a \sqrt {b} e^2 \left (\sqrt {a}+\sqrt {b} x\right )}-\frac {2 A \sqrt {a+b x^2}}{a e \sqrt {e x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/((e*x)^(3/2)*Sqrt[a + b*x^2]),x]

[Out]

(-2*A*Sqrt[a + b*x^2])/(a*e*Sqrt[e*x]) + (2*(A*b + a*B)*Sqrt[e*x]*Sqrt[a + b*x^2])/(a*Sqrt[b]*e^2*(Sqrt[a] + S
qrt[b]*x)) - (2*(A*b + a*B)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan
[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(a^(3/4)*b^(3/4)*e^(3/2)*Sqrt[a + b*x^2]) + ((A*b + a*B)*(Sqrt[
a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt
[e])], 1/2])/(a^(3/4)*b^(3/4)*e^(3/2)*Sqrt[a + b*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 464

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin {align*} \int \frac {A+B x^2}{(e x)^{3/2} \sqrt {a+b x^2}} \, dx &=-\frac {2 A \sqrt {a+b x^2}}{a e \sqrt {e x}}+\frac {(A b+a B) \int \frac {\sqrt {e x}}{\sqrt {a+b x^2}} \, dx}{a e^2}\\ &=-\frac {2 A \sqrt {a+b x^2}}{a e \sqrt {e x}}+\frac {(2 (A b+a B)) \text {Subst}\left (\int \frac {x^2}{\sqrt {a+\frac {b x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{a e^3}\\ &=-\frac {2 A \sqrt {a+b x^2}}{a e \sqrt {e x}}+\frac {(2 (A b+a B)) \text {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{\sqrt {a} \sqrt {b} e^2}-\frac {(2 (A b+a B)) \text {Subst}\left (\int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a} e}}{\sqrt {a+\frac {b x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{\sqrt {a} \sqrt {b} e^2}\\ &=-\frac {2 A \sqrt {a+b x^2}}{a e \sqrt {e x}}+\frac {2 (A b+a B) \sqrt {e x} \sqrt {a+b x^2}}{a \sqrt {b} e^2 \left (\sqrt {a}+\sqrt {b} x\right )}-\frac {2 (A b+a B) \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{a^{3/4} b^{3/4} e^{3/2} \sqrt {a+b x^2}}+\frac {(A b+a B) \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{a^{3/4} b^{3/4} e^{3/2} \sqrt {a+b x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.03, size = 82, normalized size = 0.28 \begin {gather*} \frac {x \left (-6 A \left (a+b x^2\right )+2 (A b+a B) x^2 \sqrt {1+\frac {b x^2}{a}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-\frac {b x^2}{a}\right )\right )}{3 a (e x)^{3/2} \sqrt {a+b x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/((e*x)^(3/2)*Sqrt[a + b*x^2]),x]

[Out]

(x*(-6*A*(a + b*x^2) + 2*(A*b + a*B)*x^2*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, -((b*x^2)/a)]))/
(3*a*(e*x)^(3/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 378, normalized size = 1.30

method result size
risch \(-\frac {2 A \sqrt {b \,x^{2}+a}}{a e \sqrt {e x}}+\frac {\left (A b +B a \right ) \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right ) \sqrt {\left (b \,x^{2}+a \right ) e x}}{a b \sqrt {b e \,x^{3}+a e x}\, e \sqrt {e x}\, \sqrt {b \,x^{2}+a}}\) \(223\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) e x}\, \left (-\frac {2 \left (b e \,x^{2}+a e \right ) A}{e^{2} a \sqrt {x \left (b e \,x^{2}+a e \right )}}+\frac {\left (\frac {B}{e}+\frac {b A}{a e}\right ) \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{b \sqrt {b e \,x^{3}+a e x}}\right )}{\sqrt {e x}\, \sqrt {b \,x^{2}+a}}\) \(236\)
default \(\frac {2 A \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticE \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a b -A \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a b +2 B \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticE \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a^{2}-B \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a^{2}-2 A \,b^{2} x^{2}-2 a b A}{\sqrt {b \,x^{2}+a}\, b e \sqrt {e x}\, a}\) \(378\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/(e*x)^(3/2)/(b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(2*A*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/
2))^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a*b-A*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2
))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/
2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a*b+2*B*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/
2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2
))*a^2-B*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)
^(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a^2-2*A*b^2*x^2-2*a*b*A)/(b*x^2+a
)^(1/2)/b/e/(e*x)^(1/2)/a

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(3/2)/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

e^(-3/2)*integrate((B*x^2 + A)/(sqrt(b*x^2 + a)*x^(3/2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.25, size = 58, normalized size = 0.20 \begin {gather*} -\frac {2 \, {\left ({\left (B a + A b\right )} \sqrt {b} x {\rm weierstrassZeta}\left (-\frac {4 \, a}{b}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right )\right ) + \sqrt {b x^{2} + a} A b \sqrt {x}\right )} e^{\left (-\frac {3}{2}\right )}}{a b x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(3/2)/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

-2*((B*a + A*b)*sqrt(b)*x*weierstrassZeta(-4*a/b, 0, weierstrassPInverse(-4*a/b, 0, x)) + sqrt(b*x^2 + a)*A*b*
sqrt(x))*e^(-3/2)/(a*b*x)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 1.90, size = 97, normalized size = 0.33 \begin {gather*} \frac {A \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{4}, \frac {1}{2} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt {a} e^{\frac {3}{2}} \sqrt {x} \Gamma \left (\frac {3}{4}\right )} + \frac {B x^{\frac {3}{2}} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt {a} e^{\frac {3}{2}} \Gamma \left (\frac {7}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/(e*x)**(3/2)/(b*x**2+a)**(1/2),x)

[Out]

A*gamma(-1/4)*hyper((-1/4, 1/2), (3/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*e**(3/2)*sqrt(x)*gamma(3/4)) + B
*x**(3/2)*gamma(3/4)*hyper((1/2, 3/4), (7/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*e**(3/2)*gamma(7/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(3/2)/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*e^(-3/2)/(sqrt(b*x^2 + a)*x^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {B\,x^2+A}{{\left (e\,x\right )}^{3/2}\,\sqrt {b\,x^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x^2)/((e*x)^(3/2)*(a + b*x^2)^(1/2)),x)

[Out]

int((A + B*x^2)/((e*x)^(3/2)*(a + b*x^2)^(1/2)), x)

________________________________________________________________________________________